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A solution is found for the complete problem of the propagation of smal l -ampli tude heat-  
convection waves in a semi-infini te  horizontal  layer  of a thermal ly  compress ib le  liquid. 
The waves a re  excited by a periodical ly varying tempera tu re  of a ver t ical  side wall. 

Heat-convect ion waves can be slightly damped in viscous,  heat-conducting liquids, as was f i rs t  
shown in [1-3]. In an analysis  of the conditions under which this phenomenon can occur,  we previously 
showed [4] that the horizontal  boundaries of the layer  significantly influence the propagation of these 
waves.  In the present  paper  we repor t  a detailed study of the mechanism and features of the propagation 
of heat-convect ion waves in a semi-irffinite horizontal  liquid layer  with free boundaries.  

We consider  a plane, horizontal ,  semi-infini te  liquid layer  of thickness h. A tempera ture  T 1 is 
maintained at the Iower boundary, while T 2 is maintained at the upper boundary. The tempera ture  of the 
ver t ical  side wall var ies  sinusoidally in t ime. The propagation of t empera ture  oscillations within the 
liquid layer  is a wave p rocess .  We re s t r i c t  the present  analysis  of this process  to smal l -ampli tude waves 
(i. e., we assume that the amplitude of the tempera ture  oscillations at the side wall is small).  We assume 
the horizontal  boundaries of the liquid to be free;,  under this assumption we can neglect t e rms  of the 
second order  of smal lness  in the equations and find an exact analytic solution of the problem, which gives 
a comprehensive picture of the physical  situation. 

We introduce a Car tes ian  coordinate sys tem with x axis directed to the right along the layer  and with 
y axis ver t ica l ly  upward. We use the equations for natural convection in the Boussinesq approximation:  
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Here the horizontal  boundaries a re  free sur faces ,  while the ver t ical  side wall is solid. 
duce the following dimensionless  var iab les :  

x" y' -~_ h -~ ,, ,. T _ _ T 1  
x - -  ; Y = - -  ; - - - - V ' ;  t = - - t ,  O =  - + a y .  
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Fig. l. Characterisiics of the 
temperature waves in an isother- 
mal layer. I) Damping factor 5; 
2) wavelength ;~; 3) penetration 
depth L. 

Here the p a r a m e t e r  ~ = 7h/( iThl  + A 0) is a measure  of the rat io 
of the t empera tu re -osc i l l a t ion  amplitude at the side wall and the 
t empera tu re  drop between the horizontal  boundaries .  

If there  is no ver t ica l  t empera tu re  gradient  in the layer  
(T 1 = T2) , the p a r a m e t e r  ~ vanishes (this is the case of an i so-  
thermal  layer) .  In this case, the equation for the t empera tu re  in 
(1) can be integrated independently of the equation of motion; i .e . ,  
in an i so thermal  liquid layer ,  smal l -ampl i tude  t empera tu re  waves 
propagate  p rec i se ly  as they would in a solid plate. Because of 
the gravitat ional  force,  the t empera tu re  wave is accompanied by 
a convective wave. It is not difficult to see that in the case ~ = 0 
the s teady-s ta te  solution of problem (1), (2) is 

0 = sin ng.Imexp i (cot - -  kx), W = sin ~g.Im{~ o [exp i (cot - -  kx)  +__ 

n + k, i (~ot - -  k ' x )  
I 

ikGr . ~  (4) 
�9 o= ; k = - - i ~ . / ~ i z + i P r ( o ;  k ' = - - i V . ~ - + i o ) .  

Pr (Pr - -  t) # 

The heat -convect ion waves descr ibed by Eqs. (4) a re  highly damped. Figure 1 shows the bas i c  
cha rac te r i s t i c s  of these waves (X = 2,r/Rek, 6 = 2~Imk/Rek, L = ln l0 / Imk)  as functions of the oscillation 
frequency w according to the solution in (4). The dashed lines in this figure show for compar ison the 
values of the same cha rac te r i s t i c s  of a t empera tu re  wave in a solid plate  with thermal ly  insulated walls 
(for the one-dimensional  problem),  taken f rom [5]. 

Analysis  of the curves  in Fig. 1 shows that the damping factor 6 for heat-convect ion waves increases  
rapidly with decreas ing  w (curve 1) and always turns out to be l a rge r  than 2% indicating s trong damping. 
In a thermal ly  insulated layer  we would have 6 = 2v for all ~0. As w dec reases ,  the wavelength increases  
rapidly  (curve 2), more  rapidly than in a thermal ly  insulated layer .  The penetrat ion depth L of the heat-  
convection waves for W -< 1 remains  nearly constant and cor responds  to the propagation of these waves 
through about 3/4 of the height of the layer ,  while in a thermal ly  insulated layer  this depth increases  with 
decreas ing  w (curve 3). The r eason  is that the horizontal  boundaries rapidly remove  heat, leading to a 
rapid t empera tu re  equalization in the layer .  

Analysis  of resul ts  calculated on a computer  f rom Eqs. (4) shows that a s ingle-cel l  flow occurs  
near  the wall in the layer  as the t empera tu re  at the side wall executes a complete oscillation. The d i rec -  
t ion of the rota t ion in this cell  r e v e r s e s  when the wall t empera tu re  changes sign. The intensity of this 
rotat ion inc reases  with increas ing wall t empera tu re .  There  is a slight t ime lag (or phase shift) due to the 
ro t a ry  inert ia .  The cell is oblate; the coordinates of its center  a re  near ly  independent of the pa ramete r s  
of the problem if 0) <- 1, being equal to 0.7h and 0.5h, It should be noted that the convection waves penetrate  
deeper  into the layer  than do the t empera tu re  waves,  because the liquid motion has a cellular  s t ructure ,  
i . e . ,  energy is t r a n s f e r r e d  not solely as a resu l t  of purely  t r a n s v e r s e  shear ,  but also because of motion 
along the layer .  However, because of the pronounced damping, a wave p rocess  as such (in the sense of 
maxima and minima varying in t ime and space) is essent ial ly  not observed in this situation. 

Let us consider  the case ~ ~ 0 (in which there  is a ver t ica l  t empera tu re  gradient in the layer).  Sys-  
t em (1) turns  out to be coupled, which means that the t empera tu re  and t r a n s v e r s e  convective waves in the 
liquid interact  with each other.  The mechanism for this interact ion is fundamentally different in the cases  

< 0 {heating f rom above) and a > 0 {heating f rom below). 

In the f o r m e r  case,  any ver t ica l  displacement  of a port ion of the liquid induces an Archimedes  force,  
which tends to r e s t o r e  this por t ion  of the liquid to its previous position. In this si tuation there  can be os-  
cillations of port ions of the liquid about an equil ibrium posit ion af ter  some perturbation.  Such oscillations 
a re  well-known as internal  gravitat ional  waves [6]. 

In the second case the force  acting on a ver t ica l ly  displaced port ion of the liquid is directed in the 
same di rec t ion  as displacement .  Thus, the liquid continues to move until the motion is stopped by v i scos-  
Ry, dissipation,  and  the horizontal  boundaries [7]. In this case there  is no oscil lation of a port ion of the 
liquid about an  equil ibrium posi t ion af ter  a perturbat ion.  
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Fig.  2. C h a r a c t e r i s t i c s  of the  h e a t -  
convec t ion  waves .  1, 2) Wavelength  
,~ for  c o = 1 0  -2, 1; 3, 4) 5 forco  = 1 0  -2, 
1; 5) cel l  d i a m e t e r  d. 

We find a dispersion relation relating Gr, 

( ir  k2-+'~]Pr , (i~+ke+~2)(k~+.n2)--k~"Gr~=O. 

The m e c h a n i s m  for  the p ropaga t ion  of  t e m p e r a t u r e  and 
t r a n s v e r s e  osc i l l a t ions  in this s i tua t ion  tu rns  out to be  in t i -  
m a t e l y  r e l a t ed  to  the ce l l u l a r  s t r u c t u r e  of the r e su l t i ng  con-  
vec t ion ,  which aids  the p ropaga t ion  of t he se  waves  as  hea t -  
convec t ion  waves  [2]. A bas i c  f ea tu re  of  t he se  waves  is tha t  
unde r  c e r t a i n  condi t ions  they a r e  s l ight ly  damped  in space .  
Below we ana lyze  the  na ture  and f ea tu res  of the p ropaga t ion  
of  h e a t - c o n v e c t i o n  waves  (e > 0). 

We seek  a p l ane -wave  so lu t ion  of s y s t e m  (1) sa t i s fy ing  
the boundary  condit ions at  the ho r i zon ta l  b o u n d a r i e s :  

[0, ~]  = [0o, "Fo] sin ~y exp i (cot - -  kx).  (5) 

Substi tut ing (5) into (1) we find a l inear ,  homogeneous  
s y s t e m  of a l g e b r a i c  equat ions fo r  ~0, ,I%: 

[ico + (k 2 + n2)/Pr I @ o - -  i k a ~  o = O, 
(6) 

ik Or O 0 + (k0 + k 2 + ~2) (k2 + ~2) To = p. 

Since we a r e  i n t e r e s t ed  in nont r iv ia l  solutions of this  
s y s t e m ,  we r e q u i r e  that  the d e t e r m i n a n t  of this s y s t e m  vanish .  

c~, co and k: 

(7) 

Equation (7) is a polynomial of sixth degree in k and has six complex roots. Since (7) is bicubic, 
only three of these roots satisfy the damping condition in the limit x ~ co, I nk  < 0. A general solution of 
system (1) satisfying the condition at the horizontal boundaries can be written 

3 

(9 = sin ~y . In  X cj exp i (cot - -  tejx), 

;= '  (8) 
3 

1F = sin a N. Im ~ cjVFoj exp i (o~t - -  kjx).  
/'=1 

The va lues  of ~0j a r e  found f r o m  (6) by se t t ing  | = 1: 

Toj = [io~ + (k~ + ~) /Pr] / i k j~ .  

It was shown p r e v i o u s l y  that  among  the so lu t ions  in (8) t h e r e  is at  leas t  one h a r m o n i c  which is s l ight ly  
damped  under  c e r t a i n  condi t ions  [4], so  we would expect  that  the s u p e r p o s i t i o n  in (8) would r e p r e s e n t  a 
slightly damped  h e a t - c o n v e c t i o n  wave.  

A de ta i led  a n a l y s i s  of Eq. (7) shows tha t  two of the t h r e e  h a r m o n i c s  in (8) a r e  s l ight ly  damped  (i. e. ,  
tha t  we have 5 << 1 under  c e r t a i n  condi t ions) ,  while one is strongly damped  (i. e., in  this ca se  we a lways  
have 6 > 2,r). If x > h, we can  neglec t  the s t rong ly  damped  h a r m o n i c ;  thus ,  if x > h we can d e s c r i b e  the 
s l ight ly  damped  h e a t - c o n v e c t i o n  wave as a s u p e r p o s i t i o n  of two s l ight ly  damped  modes .  It t u rns  out that  
the  i m a g i n a r y  pa r t s  of  the wave n u m b e r s  of these  modes  a r e  the s ame ,  while the r e a l  parts di f fer  in s ign  
and in magni tude .  

To  find the c om pl e x  ampl i tudes  cj we r e q u i r e  that  condit ions (2) at the v e r t i c a l  wall  be sa t i s f i ed .  
We then  find a s y s t e m  of t h r e e  a l g e b r a i c  equat ions  with t h r e e  unknowns:  

3 3 3 

 k/roj  =o. (9) 
/=i / = l  i=i 

The roots of polynomial (7) were found, and system (9) was solved on a computer. Study of the be- 
havior of the amplitudes cj as the parameters of the problem are varied shows that we have cj = (I -- In ;)c~ ~ 

The constants c o are independent of w and ~ ; ;c~ is a very weak function of Or, implying that there is no 
] J 

redistribution of energy among harmonies as ira is changed. The amplitudes of the s!ightly damped modes 

are essentially equal in magnitude, so that in the ease x > h we can write the following solution for the tem- 
perature: 

@ = 0,650 (1-- I ~ l ) exp (hn k 1, x) sin ,~y sin (cot - -  [~x) sin (&x + ~). (10) 
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Fig. 3. Phase velocity of heat -  
convection waves.  1) co =10  -2, 
2; 2 ) ~  =1 .  

where 
l 1 (Re k I + Re k~)/2; t~ = (t~e k~ - -  Re k~)/2; ~ = const; 

and k 1 and k 2 a re  the wave numbers  of the slightly damped modes.  

Equation (10) descr ibes  a damped wave with a sinusoidal 
amplitude propagating along the layer  at a velocity v = r  1. 

Analysis  of the solution for the s t r e a m  function r shows that 
the re  is a multicell  flow in the layer,  with the cell d iameter  
given by d = 7r/l 2. The intensity of the rotat ion in these cells 
falls off away f rom the side wall, so we can conclude that the 
sinusoidal nature of the amplitude in (10) is a resul t  of the mult i-  
ceil  nature of the resul t ing flow. For  all reasonable  pa rame te r  
values,  the quantity l 2 turns out to be l a rge r  t h a n / i ;  i . e . ,  the 
wavelength of the t ravel ing wave, ~ = 2~/i~, is always l a rge r  
than the cell d iameter  d. Figure  2 shows the wavelength h, the 

damping factor  5, and the d iamete r  d as functions of Ra for var ious values of ~.  Analysis  of these curves 
shows that the cell d iameter  d var ies  very  slightly (from 2.5h to 1.3h) with increas ing Ra and is nearly in- 
dependent of 'J (curve 5). This behavior  is evidence that the cel lular  flow in the heat-convect ion wave is 
int imately re la ted to the layer  height h. The wavelength of the heat-convect ion wave falls off with in- 
c reas ing  Ra; at smal l  ,z this dec rease  is most  pronounced at Rayteigh numbers  approximately equal to the 
cr i t ica l  value 1~, (curve 1). At frequencies 10  -2  < 'z < 1 the curves of ~ as a function of Ra lie between 
curves  1 and 2. It should be noted that in this range of 13ayleigh numbers  the wavelength of the hea t -con-  
vect ion waves is much l a rge r  than the l ayer  height. 

Analysis  of t i e  damping factor  6 = ;~/L as a function of the Rayleigh number shows that 5 falls off 
more  rapidly with increas ing  Rayleigh number than does the wavelength; this behavior  is a resul t  of the 
inc rease  in the penetra t ion depth L. Curves 3 and 4 show the ext reme dependences of 6 at frequencies 10 -2  

< r < 1. At sufficiently smal l  frequencies w the condition 6 << 1 can be satisfied if Ra > R ,  (curve 3). Al- 
though the wavelengths turn out to be much l a rge r  than the layer  height (;~ ~- 10h) in this case,  the pene- 
t ra t ion  depth L remains  much l a rge r  than ~. 

At t~ayleigh numbers  l~a < R �9 the damping factor  is 6 > 1; i . e . ,  the damping occurs  over  a distance 
sho r t e r  than the wavelength. However,  we note that the wavelength is quite large in this region and that 
the penetra t ion depth L with 13a near  R .  turns out to be large in compar i son  with the cell d iameter .  As a 
resu l t ,  in the case of low-frequency t empera tu re  oscillations at the side wall the heat-c0nvect ion wave in 
the layer  is approximately  a standing wave, descr ibed  by Eq. (10) with l i = 0. The penetration depth for 
such a wave turns  out to be large at sufficiently smal l  values of w and at Rayleigh numbers Ra approxi-  
mately  equal to R , .  In calculating the phase velocity we should reca l l  that l 1 is not identically equal to 
zero.  The propagat ion velocity v remains  finite, since l i and "~ turn  out to be of the same order  of smal l -  
ness .  We see f rom Fig. 3 that the velocity v dec reases  with increas ing Ra because of the decrease  of the 
wavelength. At Ra < R . ,  the velocity v is near ly  independent of the frequency ~. 

We  attr ibute the important  change in the nature of the heat -convect ion waves at the t ransi t ion through 
R .  to the c i rcumstance  that in the range Ra > R ,  there  is pronounced s teady-s ta te  cel lular  convection in 
the layer ;  i.e.~ in this case we can write the solution of problem (1)- (2) �9 as 

~r = ~o (xy) + ~ (xyt), 0 = 0 o (xy) + O~ (xyt). (11) 

Here ~0, | a r e  the s t eady-s ta te  solution of problem (1)-(2) with boundary condition | y) = 0, while 
~t, | is a t rans ient  solution. In the range Ra < R ,  we have ~0 = @0 -= 0. In the range Ra > R �9 the solu-  
t ion ~0, | descr ibes  s teady-s ta te  cel lular  convection, so that the heat -convect ion waves also propagate 
against  a background of this convection, which contributes to the slight damping of these  waves.  The ampli -  
tude of the s t eady-s ta te  convection is ~,overned, not by the amplitude of the oscillations at the side wall, 
but by the difference ((Ra --  R , ) / R a )  i/2, so that at sufficiently large values of Ra we must take into account 
the nonlinear convective t e r m s  in sys t em (1), although the amplitude of the heat-convect ion waves is small .  
In the present  paper  we r e s t r i c t  the d iscuss ion  to a study of the l inear problem; i . e . ,  we ignore Rayleigh 
numbers  much l a rge r  than 13 , .  Numerical  calculations ca r r i ed  out over a broad range of Ra in the layer  
with solid w~lls conf i rm the qualitative picture found in this l inear  approximation.  The resul ts  will be 
published in the near  future.  
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NOTATION 

is the temperature; 
is the layer height; 
a r e  the Ca r t e s i an  coordinates ;  
is the osci l la t ion frequency;  
is the k inemat ic  v i scos i ty ;  
is the t he rm a l  diffusivity;  
is the coefficient  of t he rma l  expansion; 
is the c r i t i ca l  Rayleigh number ,  giving the threshold  for  the convective instabi l i ty 
of a l aye r  heated f rom below; 
is the s t r e a m  function; 
a r e  the ve loc i ty  components ;  
is the deviat ion of the t e m p e r a t u r e  f rom its value at the equi l ibr ium posit ion; 
is the Grashof  number;  
is the Prandt l  number ;  
is the m a x i m u m  ampl i tude of the t e m p e r a t u r e  osci l lat ions at  the side wall; 
is the ve r t i ca l  t e m p e r a t u r e  gradient .  
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