HEAT-CONVECTION WAVES IN A SEMI-INFINITE
HORIZONTAL LIQUID LAYER WITH
FREE BOUNDARIES
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A solution is found for the complete problem of the propagation of smali-amplitude heat-
convection waves in a semi-infinite horizontal layer of a thermally compressible liquid.
The waves are excited by a periodically varying temperature of a vertical side wall,

Heat-convection waves can be slightly damped in viscous, heat-conducting liquids, as was first
shown in [1-3]. In an analysis of the conditions under which this phenomenon can occur, we previously
showed [4] that the horizontal boundaries of the layer significantly influence the propagation of these
waves. In the present paper we report a detailed study of the mechanism and features of the propagation
of heat-convection waves in a semi-infinite horizontal liquid layer with free boundaries.

We consider a plane, horizontal, semi~infinite liquid layer of thickness h. A temperature T; is
maintained at the lower boundary, while T, is maintained at the upper boundary. The temperature of the
vertical side wall varies sinusoidally in time. The propagation of temperature oscillations within the
liquid layer is a wave process. We restrict the present analysis of this process to small-amplitude waves
(i.e., we assume that the amplitude of the temperature oscillations at the side wall is small). We assume
the horizontal boundaries of the liquid to be free; under this assumption we can neglect terms of the
second order of smallness in the equations and find an exact analytic solution of the problem, which gives
a comprehensive picture of the physical situation.

We introduce a Cartesian coordinate system with x axis directed to the right along the layer and with
y axis vertically upward. We use the equations for natural convection in the Boussinesq approximation;
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Here the horizontal boundaries are free surfaces, while the vertical side Wall is solid. We intro~
duce the following dimensionless variables:
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The heat-convection waves described by Eqs. {4) are highly damped. Figure 1 shows the basic
characteristics of these waves (A = 21/Rek, 6 = 2rImk/Rek, L = Inl10/Imk) as functions of the oscillation
frequency w according to the solution in (4), The dashed lines in this figure show for comparison the
values of the same characteristics of a temperature wave in a solid plate with thermally insulated walls
(for the one~dimensional problem), taken from [5].

Analysis of the curves in Fig. 1 shows that the damping factor 6 for heat-convection waves increases
rapidly with decreasing w (curve 1) and always turns out to be larger than 2w, indicating strong damping.
In a thermally insulated layer we would have 6 = 2w for all w. As w decreases, the wavelength increases
rapidly (curve 2), more rapidly than in a thermally insulated layer. The penetration depth L of the heat-
convection waves for w = 1 remains nearly constant and corresponds to the propagation of these waves
through about 374 of the height of the layer, while in a thermally insulated layer this depth increases with
decreasing w {curve 3). The reason is that the horizontal boundaries rapidly remove heat, leading toa
rapid temperature equalization in the layer,

Analysis of results calculated on a computer from Egs. (4) shows that a single-cell flow occurs

near the wall in the layer as the temperature at the side wall executes a complete oscillation. The direc-
tion of the rotation in this cell reverses when the wall temperature changes sign. The intensity of this
rotation increases with increasing wall temperature. There is a slight time lag (or phase shift) due to the
rotary inertia. The cell is oblate; the coordinates of its center are nearly independent of the parameters
of the problem if w < 1, being equal to 0.7h and 0.5h. It should be noted that the convection waves penetrate
deeper into the layer than do the temperature waves, because the liquid motion has a cellular structure,
i,e., energy is transferred not solely as a result of purely transverse shear, but also because of motion
along the layer. However, because of the pronounced damping, a wave process as such (in the sense of

maxima and minima varying in time and space) is essentially not observed in this situation.

Let us consider the case a = 0 (in which there is a vertical temperature gradient in the layer). Sys-
tem (1) turns ouf to be coupled, which means that the temperature and transverse convective waves in the
liquid interact with each other. The mechanism for this interaction is fundamentally different in the cases
a < 0 (heating from above) and @ > 0 (heating from below).

In the former case, any vertical displacement of a portion of the liquid induces an Archimedes force,
which tends to restore this portion of the liquid to its previous position, In this situation there can be os-
cillations of portions of the liquid about an equilibrium position after some perturbation, Such oscillations
are well-known as internal gravitational waves [6].

In the second case the force acting on a vertically displaced portion of the liquid is directed in the
same direction as displacement. Thus, the liquid continues to move until the motion is stopped by viscos-
ity, dissipation, and the horizontal boundaries [7]. In this case there is no oscillation of a portion of the
liquid about an equilibrium position after a perturbation,
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Since we are interested in nontrivial solutions of this

system, we require that the determinant of this system vanish,
We find a dispersion relation relating Gr, @, w and k:
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Equation (7) is a polynomial of sixth degree in k and has six complex roots. Since (7) is bicubic,
only three of these roots satisfy the damping condition in the limit x — «, Imk < 0, A general solution of
system (1) satisfying the condition at the horizontal boundaries can be written
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The values of \Ifoj are found from (6) by setting @, = 1:
¥y, = [io + (& -+ n®)/Prl/ik.

It was shown previously that among the solutions in (8) there is at least one harmonic which is slightly
damped under certain conditions [4], so we would expect that the superposition in (8) would represent a
slightly damped heat-convection wave,

A detailed analysis of Eq. (7) shows that two of the three harmonics in (8) are slightly damped (. e.,
that we have 6 «< 1 under certain conditions), while one is strongly damped (i.e., in this case we always
have 6 > 2m), If x >h, we can neglect the strongly damped harmonic; thus, if x > h we can describe the
slightly damped heat-convection wave as a superposition of two slightly damped modes. It turns out that
the imaginary parts of the wave numbers of these modes are the same, while the real parts differ in sign
and in magnitude.

To find the complex amplitudes ¢j we require that conditions (2) at the vertical wall be satisfied.,
We then find a system of three algebraic equations with three unknowns:
3
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The roots of polynomial (7) were found, and system (9) was solved on a computer. Study of the be-
havior of the amplitudes cj as the parameters of the problem are varied shows that we have ¢; = (1 — la hel,
The constants c;’ are independent of w and o} icj?! is a very weak function of Gr, implying that there is no

redistribution of energy among harmonics as Ra is changed. The amplitudes of the slightly damped modes
are essentially equal in magnitude, so that in the case x > h we can write the following solution for the tem-
perature:

© == 0,650 (1— | | ) exp (link,, x)sinaysin (of — {,x) sin (lx - &). (10)
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where

I, (Rek; —Rek,)/2; [, = (Rek, —Re k,)/2; & = const;

and k; and k, are the wave numbers of the slightly damped modes.

. Equation (10) describes a damped wave with a sinusoidal
\ amplitude propagating along the layer at a velocity v = w/1,.
Analysis of the solution for the stream function ¥ shows that
there is a2 multicell flow in the layer, with the cell diameter
given by d = n/l,, The intensity of the rotation in these cells
¢ 20 240 G0R, Ra falls off away from the side wall, so we can conclude that the
sinusoidal nature of the amplitude in (10) is a result of the multi-
cell nature of the resulting flow. For all reasonable parameter
values, the quantity 7, turns out to be larger than l4; i.e., the
wavelength of the traveling wave, A = 27/{,, is always larger
than the cell diameter d. Figure 2 shows the wavelength A, the
damping factor 6, and the diameter d as functions of Ra for various values of w. Analysis of these curves
shows that the cell diameter d varies very slightly (from 2.5h to 1.3h) with increasing Ra and is nearly in-
dependent of w {curve 5). This behavior is evidence that the cellular flow in the heat-convection wave is
intimately related to the layer height h. The wavelength of the heat-convection wave falls off with in~
creasing Ra; at small w this decrease is most pronounced at Rayleigh numbers approximately equal to the
critical value R+ (curve 1), At frequencies 1072 < «» < 1 the curves of A as a function of Ra lie between
curves 1 and 2. It should be noted that in this range of Rayleigh numbers the wavelength of the heat-con-
vection waves is much larger than the layer height. )

77’/___.___#_

Fig, 3. Phase velocity of heat-
convection waves, 1) w =1072,
2 2)w =1,

Analysis of the damping factor 6 = 4/L as a function of the Rayleigh number shows that 6 falls off
more rapidly with increasing Rayleigh number than does the wavelength; this behavior is a result of the
increase in the penetration depth L. Curves 3 and 4 show the extreme dependences of 6 at frequencies 1072
<w <1, At sufficiently small frequencies w the condition 6 < 1 can be satisfied if Ra > R« (curve 3). Al-
though the wavelengths turn out to be much larger than the layer height (A = 10h) in this case, the pene~
tration depth L remains much larger than A.

At Rayleigh numbers Ra < R« the damping factor is 6 > 1; i.e., the damping occurs over a distance
shorter than the wavelength, However, we note that the wavelength is quite large in this region and that
the penetration depth L with Ra near Rx turns out to be large in comparison with the cell diameter. As a
result, in the case of low-frequency temperature oscillations at the side wall the heat-convection wave in
the layer is approximately a standing wave, described by Eq. (10) with I; = 0, The penetration depth for
such a wave turns out to be large at sufficiently small values of w and at Rayleigh numbers Ra approxi-
mately equal to Rx. In calculating the phase velocity we should recall that I, is not identically equal to
zero, The propagation velocity v remains finite, since I, and w turn out to be of the same order of small-
ness. We see from Fig. 3 that the velocity v decreases with increasing Ra because of the decrease of the
wavelength, At Ra < Rk, the velocity v is nearly independent of the frequency w.

We attribute the important change in the nature of the heat~convection waves at the transition through
R« to the circumstance that in the range Ra > R x there is pronounced steady-state cellular convection in
the layer; i.e., inthis case we can write the solution of problem (1)-(2) as

W =V, (xy) + ¥, (xpt), © =6, (xy) + O, (xyt). (11)

Here ¥; ®,are the steady-state solution of problem (1)~(2) with boundary condition 8,(0, y) =0, while

¥, &4 is a transient solution, In the range Ra < Rx we have ¥, = 8;= 0, In the range Ra > R« the solu-
tion ¥,, ®,describes steady-state cellular convection, so that the heat-convection waves also propagate
against a background of this convection, which contributes to the slight damping ofthese waves. The ampli-
tude of the steady-state convection is governed, not by the amplitude of the oscillations at the side wall,
but by the difference ((Ra — Rx)/Ra)!/?, so that at sufficiently large values of Ra we must take into account
the nonlinear convective terms in system (1), although the amplitude of the heat-convection waves is small.
In the present paper we restrict the discussion to a study of the linear problem; i.e., we ignore Rayleigh
numbers much larger than Rx. Numerical calculations carried out over a broad range of Ra in the layer
with solid walls confirm the qualitative picture found in this linear approximation. The results will be
published in the near future.
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NOTATION

is the temperature;

is the layer height;

are the Cartesian coordinates;

is the oscillation frequency;

is the kinematic viscosity;

is the thermal diffusivity;

is the coefficient of thermal expansion;

is the critical Rayleigh number, giving the threshold for the convective instability
of a layer heated from below;

is the stream function;

are the velocity components;

is the deviation of the temperature from its value at the equilibrium position;

Gr = Bgh®(ivh) + Ay)/v?  is the Grashof number; :
Pr = v/a is the Prandtl number;

Ay

is the maximum amplitude of the temperature oscillations at the side wall;

y =(Ty — Ty)’h is the vertical temperature gradient.
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